

Introduction to Economic Geology

AKHIL KUMAR DWIVEDI

ASSISTANT PROFESSOR (GEOLOGY)
MOHANLAL SUKHADIA UNIVERSITY,
UDAIPUR

Course Structure

M. Sc. Geology - Course structure

Under Choice Based Credit System (CBCS)

Department of Geology Faculty of Earth Sciences, M.L. Sukhadia University

M. Sc. Second Year (Semester III) : 2019-20 GEOLOGY

Cours e S.No.	Course Code	Title of Course	L-T-P	No. of Credit	Max. Marks		Total
					Univ. Exam	Inter. Exam	
1	M3GEO01-CT09	Core Course –IX Economic Geology	3-1-0	4	80	20	100
2	M3GEO02-CT10	Core Course - VI Igneous Petrology	3-1-0	4	80	20	100
3	M3GEO03-ET01	Discipline Specific Elective Course – I Ground Water Geology	3-1-0	4	80	20	100
4	M3GEO04-ET02	Discipline Specific Elective Course – II Photo-geology and Remote Sensing	3-1-0	4	80	20	100
5	M3GEO05-CP05	Core Course PR-V (Economic Geology & Igneous Petrology)	0-0-8	4	80	20	100
6	M3GEO06-EP01	Elective PR-I (Ground Water Geology & Photo- geology and Remote Sensing)	0-0-8	4	80	20	100
	1	OTAL		24	480	120	600

Syllabus

M3GEO01-CT09

Core Course – IX : Economic Geology N

No. of Credits: 4

Unit – I

Study of ore forming processes: Magmatic concentration, Hydrothermal, Contact metasomatism, Mechanical and Residual concentration, Volcanogenic, Bacteriogenic.

Unit -II

Study of ore forming processes: Oxidation and Supergene Sulphide enrichment, Metamorphism, Evaporation and Sedimentation, MVT type deposits, Skarn deposits. Plate tectonics in relation to ore genesis.

Unit -III

Metallogenic epochs and provinces, Structures and Textures of ores, Wall rock alteration, Control of Mineralization, Classification of ore deposits, Important World Deposits: Porphyry Iron and Copper deposits, Broken Hill deposit of Australiya, Ni-Pt deposit of Ontario, Stassfurt deposit of Germany, Witwaters Sand deposit of South Africa, Kuroko type deposit.

Unit - IV

Study of the following metallic deposits in India with reference to their geographic and geologic distribution mode of occurrence and origin: iron, manganese, aluminum, chromium, gold, copper, lead, zinc and atomic minerals.

Unit - V

Study of the following minerals in India with reference to their geographic and geologic distribution mode of occurrence origin and uses: fertilizer minerals, refractory minerals, glass and ceramic minerals, abrasives, gemstones, cement, building stones, energy & fuel minerals: Coal and petroleum deposits: their distribution, classification, origin and potentialities; Important coal and petroleum fields of India.

Books:

Recommended Books:

Craig, J.M. & Vaughan, D.J., 1981: ore Petrography and Mineralogy. John Wiley

Dahlkamp, F.J., 1993: Uranium Ore Deposits. Springer Verlag

Evans, A.M., 1993: Ore Geology and Industrial Mineral. Blackwell

Guilbert, J.M. and Park, Jr. C.F., 1986: The Geology of Deposits. Freeman

Holson, G.D. and Tiratsoo, E.N., 1985: Introduction to Petroleum Geology. Gulf Publ. Houston, Texas

Jansen M.L. & Bateman A.M.: 1981, Economic Mineral Deposits, John Wiley & Sons, Singapore

Klemm, D.D. and Schneider, H.J., 1977: Time and Strata Bound Ore Deposits. Springer Verlag

Mookherjee, A., 2000: Ore Genesis – a Holistic Approach. Allied Publisher

Selley, R.C., 1998: Elements of Petroleum Geology. Academic Press

Singh, M.P.(Ed.), 1998: Coal and Organic Petrology. Hindustan Publ., New Delhi

Course Management & Delivery:

❖ Google Classroom (Attendance, Lecture Notes, PPT's,

PDF's, Assignments, Quizes & May be exams also?)

Google Meet: Adopting the flipped classroom approach

Objectives & Outcomes:

The course is aimed to inculcate a wider perspective of ore deposits, their genesis in light of various ore forming process under prevailing tectonics through geologic ages. The learner will also come to know about geologic and geographic distribution of important metallic and non metallic minerals in Indian subcontinent.

Some Basics:

- Ore
- Gangue
- > Tenore
- Metallic Minerals
- Non Metallic Minerals
- Crustal Abundance
- Concentration Factor

Crustal Abundance of Economically Important Elements

Name	Chemical Symbol	Atomic Number	Crustal Abundance (Percent by weight)	
Aluminum	AI	13	8.00	
Iron	Fe	26	5.8	
Magnesium	Mg	12	2.77	
Potassium	K	19	1.68	
Titanium	Ti	22	0.86	
Hydrogen	н	1	0.14	
Phosphorus	P	15	0.101	
Manganese	Mn	25	0.100	
Fluorine	F	9	0.0460	
Sulfur	S	16	0.030	
Chlorine	CI	17	0.019	
Vanadium	V	23	0.017	
Chromium	Cr	24	0.0096	
Zinc	Zn	30	0.0082	
Nickel	Ni	28	0.0072	
Copper	Cu	29	0.0058	
Cobalt	Co	27	0.0028	
Lead	Pb	82	0.00010	
Boron	В	5	0.0007	
Beryllium	Be	4	0.00020	
Arsenic	As	33	0.00020	
Γin	Sn	50	0.00015	
Molybdenum	Mb	42	0.00012	
Jranium	U	92	0.00016	
ungsten	w	74	0.00010	
Silver	Ag	47	0.000008	
Mercury	Hg	80	0.000002	
Platinum	Pt	78	0.0000005	
Gold	Au	79	0.000002	

Table 1 Average crustal abundances for selected metals and typical concentration factors that need to be achieved in order to produce a viable ore deposit

	Average crustal abundance	Typical exploitable grade	Approximate concentration factor
Al	8.2%	30%	×4
Fe	5.6%	50%	×9
Cu	55 ppm	1%	×180
Ni	75 ppm	1%	×130
Zn	70 ppm	5%	×700
Sn	2 ppm	0.5%	×2500
Au	4 ppb	5 g t ⁻¹	×1250
Pt	5 ppb	5 g t ⁻¹	×1000

Note: 1 ppm is the same as 1 g t^{-1} .

Metal	Ore Mineral	Composition	Percent Metal
Gold	Native gold	Au	100
	Calaverite	AuTe ₂	39
	Sylvanite	(Au,Ag)Te₂	_
Silver	Native silver	Ag	100
	Argentite	Ag ₂ S	87
	Cerargyrite	AgCI	75
Iron	Magnetite	FeO·Fe ₂ O ₃	72
	Hematite	Fe ₂ O ₃	70
	"Limonite"	Fe ₂ O ₃ ·H ₂ O	60
	Siderite	FeCO ₃	48
Copper	Native copper	Cu	100
	Bornite	Cu _s FeS ₄	63
	Brochantite	CuSO ₄ ·3Cu(OH) ₂	62
	"Chalcocite"	Cu ₂ S	80
	Chalcopyrite	CuFeS ₂	34
	Covellite	CuS	66
	Cuprite	Cu₂O	89
	Digenite	Cu ₉ S ₅	78
	Enargite	3Cu ₂ S·As ₂ S ₅	48
	Malachite	CuCO ₃ ·Cu(OH) ₂	57
	Azurite	2CuCO ₃ ·Cu(OH) ₂	55
	Chrysocolla	CuSiO ₃ ·2H ₂ O	36

Lead	Galena	PbS	86
	Cerussite	PbCO ₃	77
	Anglesite	PbSO ₄	68
Zinc	Sphalerite	ZnS	67
	Smithsonite	ZnCO ₃	52
	Hemimorphite	H₂ZnSiO₅	54
	Zincite	ZnO	80
Tin	Cassiterite	SnO ₂	78
	Stannite	Cu ₂ S·FeS·SnS ₂	27
Nickel	Pentlandite	(Fe,Ni)S	22
	Garnierite	H ₂ (Ni,Mg)SiO ₃ ·H ₂ O	_
Chromium	Chromite	FeO-Cr ₂ O ₃	68
Manganese	Pyrolusite	MnO ₂	63
	Psilomelane	Mn ₂ O ₃ ·xH ₂ O	45
	Braunite	3Mn ₂ O ₃ ·MnSiO ₃	69
	Manganite	Mn ₂ O ₃ ·H ₂ O	32
Aluminum	Bauxite	Al ₂ O ₃ ·2H ₂ O	39
Antimony	Stibnite	Sb ₂ S ₃	71
Bismuth	Bismuthinite	Bi ₂ S ₃	81
Cobalt	Smaltite	CoAs ₂	28
	Cobaltite	CoAsS	35
Mercury	Cinnabar	HgS	86
Molybdenum	Molybdenite	MoS ₂	60
	Wulfenite	PbMoO ₄	39
Tungsten	Wolframite	(Fe,Mn)WO ₄	76
	Huebnerite	MnWO.	76
	Scheelite	CaWO.	80
Uranium	Uraninite Pitchblend	Combined UO ₂ and UO ₃	50-85
	Coffinite	USiO.	75
	Carnotite	K2O-2U2O3-V2O5-nH2O	60 U ₃ O ₈

Any Questions??

Thank You!!!